Burgers' denkleminin sayısal çözümü
Küçük Resim Yok
Tarih
2007
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Niğde Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Burgers' denkleminin Galerkin Sonlu Eleman Metodu kullanılarak sayısal çözümü bulundu. Burgers' denkleminin Petrov-Galerkin Sonlu eleman metodu ve Cubic BSpline metotları kullanılarak sayısal çözümü bulundu. Galerkin sonlu eleman yaklasımı genis bir dizi yapıskanlık degeriyle Burgers' denklemini dogru sekilde çözebildigi görülmektedir. Cubic B-Spline Collacation metot ile Burgers' denkleminin sayısal çözümü üç test problemiyle gösterilir. Burgers denkleminin zaman- uzay birlesimi kosulsuz olarak kararlı gösterilen fark denklem sistemini sonuç olarak verdi. Burgers' denklemi Petrov- Galerkin ile çözüldü. Adi diferansiyel denklemlerle sonuçlanan sistemin sayısal çözümü için bir yineleme iliskisi çarpım yaklasımı içeren Cranc- Nicolson yaklasımı yoluyla elde edildi.
The numerical solution of Burgers' equation was found by using a Galerkin Finite Element metod. The numerical solution of Burgers' equation was obtained by using a Petrov-Galerkin Finite Element Method and a Cubic B-Spline method, as well. It is shown that Galerkin's finite element approach is capable solving Burger's equation accurately with a wide range of viscosity values. The numerical solution of Burgers' equation are demostrated with the Cubic B-Spline Collocation Method by three test problems. Time-space integration of the Burgers' equation yielded a system of difference equation which is shown to be uncondionally stable. The Burgers? equation was solved via the Petrov-Galerkin Method.A recurrence relationship for the numerical solution of the resulting system of ordinary differential equations is found out via a Crank-Nicolson approach involving a product approximation.
The numerical solution of Burgers' equation was found by using a Galerkin Finite Element metod. The numerical solution of Burgers' equation was obtained by using a Petrov-Galerkin Finite Element Method and a Cubic B-Spline method, as well. It is shown that Galerkin's finite element approach is capable solving Burger's equation accurately with a wide range of viscosity values. The numerical solution of Burgers' equation are demostrated with the Cubic B-Spline Collocation Method by three test problems. Time-space integration of the Burgers' equation yielded a system of difference equation which is shown to be uncondionally stable. The Burgers? equation was solved via the Petrov-Galerkin Method.A recurrence relationship for the numerical solution of the resulting system of ordinary differential equations is found out via a Crank-Nicolson approach involving a product approximation.
Açıklama
Fen Bilimleri Enstitüsü, Matematik Ana Bilim Dalı
Anahtar Kelimeler
Matematik, Mathematics