Lineer ve lineer olmayan integral denklemlerin ve integro-diferensiyel denklemlerin çözümlerinin varyasyonel iterasyon metodu ile hesaplanması
Yükleniyor...
Tarih
2011
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Niğde Üniversitesi / Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Lineer ve lineer olmayan integral ve integro-diferansiyel denklemler modern matematiğin önemli bir dalıdır ve mühendislik, mekanik, fizik, kimya, astronomi, ekonomi, potansiyel teori gibi pek çok uygulama alanında ortaya çıkan problemlerin çözümüyle ilgilenir. Lineer ve lineer olmayan integral ve integro-diferansiyel denklemlerin nümerik ve yarı-analitik çözümünde kullanılan Adomian Decomposition Metodu (ADM), Diferansiyel Transform Metodu (DTM), Homotopy Perturbation Metodu (HPM), Galerkin metodu, Taylor- Chebhsyev collocation metotları gibi pek çok metod vardır.Biz bu çalışmada son dönemde önerilmiş olan ve pek çok çeşitli doğrusal ve doğrusal olmayan diferansiyel denklemler, sınır-değer ve başlangıç-değer problemleri, diferansiyel denklem sistemlerine başarıyla uygulanmış olan analitik yaklaşım tekniği olan Varyasyonel İterasyon metodunu (VIM), lineer ve lineer olmayan integral ve integro-diferansiyel denklemleri hesaplanmada kullandık.
Linear and non-linear integral and integro-differential equations are an important branch of modern mathematics and deal with the solution of the problems arising frequently in many applied areas which include engineering, mechanics, physics, chemistry, astronnmy, electrostatics, potantial teori, etc. There ara several numerical or semi-analytical methods available for solving linear and non-linear integral and integro-differential equations. For example, Adomian Decmposition Mehtod (ADM), Differential Transform Method (DTM), Homotopy Perturbation Method (HPM), Galerkin Method , Taylor- Chebhsyev collocation method.In this work, recently proposed analytical approximation solution technique Variational Iteration Method (VIM), which has been succesfully applied to various kinds of linear and nonlinear differential equations, boundary-value and initial-value problems and differential equations systems, is used for solving of linear and non-linear integral and integro-differential equations.
Linear and non-linear integral and integro-differential equations are an important branch of modern mathematics and deal with the solution of the problems arising frequently in many applied areas which include engineering, mechanics, physics, chemistry, astronnmy, electrostatics, potantial teori, etc. There ara several numerical or semi-analytical methods available for solving linear and non-linear integral and integro-differential equations. For example, Adomian Decmposition Mehtod (ADM), Differential Transform Method (DTM), Homotopy Perturbation Method (HPM), Galerkin Method , Taylor- Chebhsyev collocation method.In this work, recently proposed analytical approximation solution technique Variational Iteration Method (VIM), which has been succesfully applied to various kinds of linear and nonlinear differential equations, boundary-value and initial-value problems and differential equations systems, is used for solving of linear and non-linear integral and integro-differential equations.
Açıklama
Anahtar Kelimeler
Lineer ve Lineer Olmayan İntegral ve İntegro-Diferansiyel Denklemler, Varyasyonel İterasyon Metod, Linear and Non-Linear Integral and Integro-Differential Equations, Variational Iteration Method
Kaynak
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Aşlama, R. (2011). Lineer ve lineer olmayan integral denklemlerin ve integro-diferensiyel denklemlerin çözümlerinin varyasyonel iterasyon metodu ile hesaplanması. (Yüksek Lisans Tezi) Niğde Üniversitesi, Fen Bilimleri Enstitüsü, Niğde