Derin öğrenme teknikleri ile elmada (Granny Smith) kusur tespiti
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Elma (Malus communis L.) derimi sırasında ürünün kalitesini düşüren fiziksel zararlanmaların oluşması kaçınılmazdır. Zarar gören meyvelerin erken tespit edilerek ayrılması ticari değerinin artırılması açısından önemlidir. Tespit edilemeyen kusurlu ürünler sağlam ürünlerin kalitesini etkilediğinden dolayı gıda kaybının yanı sıra üretim hacmini de düşürmektedir. Çalışmanın amacı, “Granny Smith” elma çeşidinden alınan görüntüler üzerinde, derin öğrenme teknikleri kullanarak elmalarda kusur tespit etmektir. Özel koşul gerektirmeyen, uygun maliyetle sınıflandırma ve kusur tespiti yapacak bir teknik araştırılırmıştır. Çalışmada, InceptionV3 modelinin 100 çevrim sonunda test doğruluğu %100, AlexNet modelinin ise test doğruluğu %98.33 elde edilmiştir. Derin öğrenme teknikleriyle, derim sırasında meyve üzerinde oluşan zararlar tespit edilerek ayrılmasıyla, derim sonrası oluşabilecek ekonomik kayıpların önüne geçebilecek bir yöntem geliştirilmiştir.
Açıklama
Anahtar Kelimeler
Bilgisayar Bilimleri, Yazılım Mühendisliği, Bahçe Bitkileri, Görüntüleme Bilimi ve Fotoğraf Teknolojisi, Bilgisayar Bilimleri, Yapay Zeka, Derin öğrenme, Kusur Tespiti, AlexNet, InceptionV3, Granny Smith, Elma sınıflandırması
Kaynak
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
12
Sayı
4